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Design for electromagnetic wave transparency with metamaterials
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With the help of the “neutral inclusion” concept, the conditions of electromagnetic wave transparency for
multilayered spheres, coated spheroids, and general particulate composites are analytically derived in the
quasistatic case. The basic idea is to make the effective material property of a composite region equal to that
of the surrounding medium. The general full-wave analysis shows that the obtained quasistatic conditions are
useful in designing the electromagnetically transparent materials.
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I. INTRODUCTION

There are basically two ways to achieve “low observabil-
ity” for an object in electromagnetic waves. One is based on
an absorption mechanism, such as the use of absorbing
screens [1] and radar absorbing materials [2]. The other way
is to make an object “transparent” to the wave. The transpar-
ency can be realized by many mechanisms; for example,
antireflection coatings [3] have been commonly used. Re-
cently, the transparency has been obtained based on new
mechanisms [9-12] brought by metamaterials. Metamaterials
are artificially fabricated materials. They can be designed to
have unusual properties not found in conventional materials.
The left-handed material [4], one type of metamaterial, has
negative permittivity and negative permeability, which are
realized through electrically and magnetically resonant struc-
tures [5,6], respectively. Experiments have shown that this
material can exhibit negative refraction [7,8].

Multilayered structures with metameterial can be trans-
parent to the electromagnetic (EM) wave based on the un-
usual photon tunneling effect [9,10]. Two-dimensional plas-
monic metamaterial can also be transparent for an EM wave
if its impedance matches perfectly to vacuum [11]. These
two methods are suitable for planar or nearly planar trans-
parent objects. Recently, a more striking method has been
proposed by Al and Engheta [12]. They utilized a plasmonic
or metamaterial coating to cover a spherical or cylindrical
dielectric core. By adjusting the material and geometrical
parameters, they found that at certain configuration, the total
scattering cross section of this coated sphere can be ex-
tremely low. That work introduced a new way to achieve the
“invisibility.” In this paper, we continue to discuss this
method and emphasize primarily how to achieve transpar-
ency for other objects, such as multilayered spheres, coated
spheroids, and two-phase composites. To this end, we will
propose an idea based on “neutral inclusion” to derive the
transparency condition in the quasistatic case. The obtained
condition will be further checked by a full-wave analysis.

II. THEORETICAL ANALYSIS

As shown in Fig. 1, consider a random-shaped region
with permittivity e« and permeability u. embedded in an
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infinite matrix of permittivity g, and permeability w,,; a
plane wave propagates through this medium. The region can
be made of either a homogeneous medium or a heteroge-
neous material. For the latter, e+ and s then denote the
effective permittivity and effective permeability of the het-
erogeneous material. It is not surprising that if the material
property of this region is the same as that of the background
medium (matrix), the electromagnetic field outside of this
region will not be disturbed. In other words, the region will
not be “seen” by the outside observer. The basic idea of this
paper is to derive the condition for electromagnetic wave
transparency. When the region is made of a homogeneous
material, this is a trivial case. However, if the region is made
of a heterogeneous material, there are many design possibili-
ties for equating its effective material property to that of the
background medium. In order to proceed, we will recall the
concept of “neutral inclusion” discussed extensively by Mil-
ton [13]. A neutral inclusion is a simple pattern (coated
sphere, coated spheroid, etc.). When a neutral inclusion is
embedded in a material made of assemblages of such a pat-
tern with gradual size (in order to fill the whole space), it will
not perturb the static electric, magnetic, or mechanical fields
outside of this inclusion. Although the neutral inclusion is
defined in the static or quasistatic case, it can still provide
useful information in the full-wave scattering case.

We first apply this idea to the coated sphere that has been
analyzed by Alu and Engheta [12]. Suppose that a sphere of
radius r; is covered with a coating of radius r,. The relative
permittivities of the nonmagnetic core and coating are de-
noted by €, and &,, respectively. In order to make this coated
sphere a neutral inclusion with respect to the surrounding air,
the effective permittivity e« of an assemblage of coated
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FIG. 1. Example of neutral inclusion.
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FIG. 2. Cross section of a multilayered sphere.

spheres with the gradual size needs to be equal to that of the
air, i.e., we need to set e:=1. In the quasistatic case, the
effective permittivity e of the coated sphere assemblage can
be estimated simply from the Maxwell-Garnett formula [14],

3f1ex(e1 = &)
3er+ fole) — &)’

where fi=1-f,=r1/r; is the volume fraction of the core
particle. For the “invisibility,” the general condition e.=1
leads to the following relation:

(1)

Ex=8&r+

(65— 1)(2ey+e) r
R § 2)
(2ey+ )(ea—ey) ry
Equation (2) is exactly the same as that derived by Alu and
Engheta [12]. Actually, the effective permittivity given by
Eq. (1) provides the bound for any isotropic two-phase com-
posite [15]. This indicates that the effective permittivity can
never be lower than unity if each phase of the composite is a
conventional material. However, by introducing metamate-
rial whose permittivity and/or permeability are often less
than unity, many new features may arise. For example, we
can design a composite with unit effective permittivity and
effective permeability if metamaterials are introduced.
Encouraged by the above result, the quasistatic transpar-
ency conditions will be derived for several other structures in
the following. Without loss of generality, these conditions
will be given for nonmagnetic materials.

A. Multilayered sphere

Now we apply the idea of “neutral inclusion” to a multi-
layered sphere whose cross section is shown in Fig. 2. Each
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region ([=1,2,...,L) is characterized by relative permittiv-
ity g, relative permeability w;, refractive index my=n;/ny,,
(n;=\e ), and size parameter x;=2r,/\o, where \ is the
free-space wavelength and r; is the outer radius of the /th
layer. In Mie theory, the scattering coefficients a,, and b, can
be calculated, which are given in the Appendix. The full-
wave total scattering cross section of this multilayered
sphere Q, can be computed by

A2 o
0, = 2—02 2n+1)(|a,|> + |b,?). (3)
T =1

In order to make this multilayered sphere “invisible,” we
have to reduce the total cross section Q,. A direct way of
accomplishing this is to make zero the scattering coefficients
a, and b,. When the scatterer is small enough compared with
the wavelength of operation [Rayleigh approximation (RA)],
we need only consider the influence of the first-order [n=1 in
Eq. (3)] scattering coefficients. The conditions of validity of
this approximation are {max(|myx|,|m,x/|),l=1,2,...,L}
< 1. Low observable conditions can then be derived, follow-
ing the same process for a coated sphere [12].

Here, we will use the concept of “neutral inclusion” to
derive the transparency condition in a simple and direct way.
To do this, first we compute the effective permittivity of the
assemblage of multilayered spheres. This can be evaluated
through a recursive method by considering the /-layer sphere
as an effective core embedded in the /th-coating material.
The effective permittivity €', of the I-layer sphere assemblage
is then calculated by [13]

3(1 _fl)gl(gi_l - &)
381+f1(8{:<_1 - 81) ’

I _
.=

g 1=34,....L, (4
where f;=1-r; ,/r; is the volume fraction of the [th layer in
the I-layer sphere. &2 (the effective permittivity of the coated
sphere assemblage) is calculated from Eq. (1). The transpar-
ency condition for the multilayered sphere can then be ob-
tained by setting ef=1. For a doubly coated sphere, the
transparency condition becomes

r§(283 +1)
rg(83 -1)

B 2(r3— 1) (e85 + 83) + 2(2r3 + 1) eres + (13 + 21 €5

- (r% - r?)(£183 - 28%) + (ZrS + r?)8283 - (rg + ZrT)slsz '
(5)

If material and geometrical parameters of a doubly coated
sphere satisfy Eq. (5), in the RA this composite sphere will
not perturb the EM wave when it is placed in the air.

B. Coated spheroid

Following the “neutral inclusion” concept, we can easily
derive the transparency condition for a nonspherical particle
system, for example the double-layer confocal spheroid. In
the Cartesian coordinates (x,y,z), the semiaxes of the core
and mantle are denoted by a;, a;, and pa; (I=1 for the core,
1=2 for the mantle), respectively, where p is the aspect ratio

026607-2



DESIGN FOR ELECTROMAGNETIC WAVE...

of the spheroid. Due to the shape asymmetry, the overall
property of the assemblage of aligned double-layer confocal
spheroids will be anisotropic if the core and mantle are all
isotropic. So we introduce an anisotropic core to cancel the
shape anisotropy and to make this double-layer spheroid ef-
fectively isotropic. In the coordinate system mentioned
above, an anisotropic core of permittivity tensor &)
=(&y,&;, me,), which has only three diagonal components, is
used and covered with an isotropic coating of permittivity &,.
The effective permittivity tensor of the composite filled with
such a coated spheroid is then given by &.=(g],,5,,833),
where [16]

8* _8* —er 4 f(81_82)82 (6)
e e+ P(1-f)(e; - &)’
8;3 —e (e - &))e, 7)

+ 9
P e+ (1-2P)(1 - f)(7e, - &2)
with f=(a,/a,)*. For prolate spheroids,

1 1 1
P=-11+ - ———
2{ P’ - 1{ 2V1-1/p?

“ <1+\u1—1/p2) _,
nf —m—— s =1,
1-V1-1/p? P

and for oblate spheroids,

1 1 1 —
P=—41+— 1-— tan”'(N1/p> = 1) | ¢,
2 p*-1 V1/p* =1

p=1.

By setting sTl =s§3E 1, the transparency condition of this
coated spheroid can then be derived. This leads to
(g2 = D[Pe; + (1 - P)ey]

I eam e P+ (1= Plea) o

(g, = D[(1 =2P)ne, +2Ps,]
(ey— me)[(1 =2P) +2P¢,]

f= (8b)
It is easy to check that the condition (1) can be recovered
when p=1 and =1, noting that P=1/3 for this case.

C. Composite material

In the small-particle approximation, a heterogeneous scat-
terer can be effectively considered as a homogeneous one.
By setting the effective permittivity of the heterogeneous
scatterer to be that of the surrounding medium, the scatterer
will be “invisible.” This transparency effect will not be sen-
sitive to the microstructure of the scatterer, and depends only
on its overall property. Consider that the shaded area in Fig.
1 represents a two-phase isotropic composite. To achieve the
transparency, we need to determine exactly the effective per-
mittivity of the composite. For simplicity, we consider the
composite with dispersion particles. In the long-wavelength
limit, the effective permittivity can be approximately evalu-
ated by the Maxwell-Garnett formula [14],
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3cie5(8) — &)
3,4+ (1-c))(e -8y’

Ex=8&r+ (9)
where € and &, are permittivities of the particle and matrix,
respectively, and ¢ is the particle volume fraction. The qua-
sistatic transparency condition for this composite can be ob-
tained by setting e.=1.

III. NUMERICAL RESULTS

In this section, we will show how the structures discussed
in Sec. II can be made “invisible” in the general full-wave
scattering case.

A. Multilayered sphere

Unusual scattering property of a coated sphere with
metamaterial has been fully discussed by Alu and Engheta
[12]. Here we will provide some additional results by inves-
tigating a doubly coated sphere. When the parameters £,=35,
&,=3, e5=-2, u=pr=p3=1, and r;=0.2r; for a doubly
coated sphere are considered, the effective permittivity & of
the doubly coated sphere assemblage as a function of ratio
ry/ry is shown in Fig. 3(a). With the help of Eq. (3), the
normalized total scattering cross sections of this doubly
coated sphere and a single homogeneous sphere with the
permittivity e« and radius r; as a function of ratio r,/r; are
illustrated in Figs. 3(b) and 3(c) for two particle sizes. When
the particle size is very small (r;=\,/100), the total scatter-
ing cross section of the composite sphere is consistent with
that of the effective homogeneous sphere and both are sig-
nificantly reduced around &.=1 [Fig. 3(a)]. This implies that
the condition (5) obtained from the quasistatic analysis pro-
vides indeed a valid prediction. As a matter of fact, corre-
sponding to the “point” .~ 1, the doubly coated sphere is
an electrically tiny particle, since its effective refractive in-
dex is almost equal to that of the air. When the particle size
increases (r3=M\q/10), a significant reduction of the total
scattering cross section still exists, but the corresponding ra-
tio r,/r5 has been shifted downwards, compared to the qua-
sistatic prediction (the dashed line).

Now another set of parameters is examined for the doubly
coated sphere, which is g;=-5, &,=3,e3=10, u;=pr=u3
=1, and r,=1.1r;. The effective permittivity of the assem-
blage is plotted in Fig. 4(a). When the particle size is very
small (r;=\y/100), a significant reduction of the total scat-
tering cross section is observed at the ratio r3/r, correspond-
ing to e-=1, as shown in Fig. 4(b). A strong resonance is also
observed for both the doubly coated sphere and the effective
homogeneous sphere around the ratio r3/r,=1.13. The reso-
nance is due to the vanishing denominators of the first-order
(n=1) scattering coefficients b,. This effect is classified as
the surface mode of the spherical particle [17]. For a small
homogeneous sphere of permittivity €, the appearance of the
surface mode corresponds to the condition e=—(n+1)/n for
the nonmagnetic case [17,18]. It can be found that the con-
dition of the lowest-order mode for a sufficiently small plas-
monic sphere is e=—2. In the small-particle approximation,
we may expect that the condition of the lowest-order surface
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FIG. 3. (a) The effective permittivity &« of a doubly coated
sphere assemblage calculated from Eq. (4), and (b,c) normalized
scattering cross section of a doubly coated sphere (the solid line)
and effective homogeneous sphere (the dashed line) with the per-
mittivity e« and radius r3, vs the ratio r,/r; for different r;.

mode for the multilayered sphere can be given by e.=-2,
where the effective permittivity e- is evaluated analytically
from Eq. (4). From Figs. 4(a) and 4(b), it is found that the
ratio r3/r,=1.13 at which the resonance occurs indeed cor-
responds to e.=—2. For a large particle (r;=\y/10), the
second-order (n=2) surface mode is also excited. This can be
seen from the dashed curve in Fig. 4(c), where the lower
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FIG. 4. (a) The effective permittivity . of a doubly coated
sphere assemblage calculated from Eq. (4) and (b,c) normalized
scattering cross section of a doubly coated sphere (the solid line)
and effective homogeneous sphere (the dashed line) with the per-
mittivity - and radius r3, vs the ratio r3/r, for different ry.

resonance peak corresponds approximately to e:=-1.5,
which is the condition of the second-order surface mode for
a homogeneous sphere. For the doubly coated sphere, two
resonance peaks have been shifted downwards.
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FIG. 5. Contour plots of the distribution of radial component of
the scattered electric field in the E plane for a doubly coated sphere
(left) and its effective sphere (right) [e,==5, &,=3, £3=10, w,;
=M= M3 = 1, r1=)\0/ 100, ry= 1.1}’1, and (a,b) r3= 1.2}’2; (C,d) I3
=1.31r,].

Figure 5 shows the contour plots of the distribution of the
radial component of the scattered electric field in the E plane,
to further explain how a multilayered sphere can be effec-
tively represented by a homogeneous one in the long-
wavelength limit. The parameters of the doubly coated
sphere are the same as those used in Fig. 4 and the core
radius is taken to be r;=\y/100. When r;=1.2r, is chosen,
there are strong scattered fields in the outside region of the
doubly coated sphere, as shown in Fig. 5(a). We can find that
the same scattered radiation can also be produced by a single
homogeneous sphere with the permittivity e=-0.73 [Fig.
5(b)]. When the particle size is increased to r3=1.31r,, the
two coatings can significantly cancel the scattered radiation
of the core [Fig. 5(c)]. The effective permittivity of the as-
semblage is now close to that of the surrounding air, i.e.,
unity.

Compared with a coated sphere, a doubly coated sphere
has introduced more free parameters to achieve the “invis-
ibility.” For a larger particle, these additional parameters can
be tuned to make simultaneously zero the higher-order scat-
tering coefficients a, and b, in Mie theory, realizing “invis-
ible” bodies in the full-wave scattering case, while in the
small-particle approximation, they can also provide more op-
portunities to achieve the transparency. For example, when a
sphere with e,=-2, u;=1, and r;=\y/10 is covered with a
dielectric coating with £,=10, u,=1, and r,=1.1r;, we can
employ another dielectric (u3;=1) cover to make the body
“invisible.” Figure 6 shows the total scattering cross section
of this doubly coated sphere for different permittivity €5 and
the cover radius 3. We can find that there are many possi-
bilities of &5 and r3, which can be used to make the particle
“invisible.”
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FIG. 6. Normalized total scattering cross section of a doubly
coated sphere vs the permittivity &3 and ratio r3/r; (g;=-2, &,
= 10, M= Mp= 1, r1=7\0/10, and = 1.17‘1).

B. Coated spheroid

In this section, we will show how a coated spheroid can
be made less observable for the EM wave. For an anisotropic
core with &=(-3,-3,-37) and @&;=(1,1,1) covered with
an isotropic coating with &,=10 and u,=1, the values of p
and 7 for which the condition (8) is satisfied for different
ratio a,/a, are plotted in Fig. 7. It is expected that the scat-
tering cross section of these designed composite spheroids
will be dramatically reduced in the small-particle approxima-
tion. Now we examine the ratio a,/a;=1.25. From Fig. 7,
p=2 and 7=1.78 are thus obtained. The full-wave analysis
for such a designed composite spheroid using the commer-
cial FEM software [19] is performed. Figure 8 shows the
simulated normalized total scattering cross section for a;
=Ny/20 in three different incident cases. As we can see, for
all three cases very low total scattering cross sections are

10 . . . . . 4
8+ -3
6 -2

P n
44 1
24 Lo
0 : . : . : -1
1.15 1.20 1.25 1.30

ala

FIG. 7. Aspect ratio p and 7 for which the condition (10) is
satisfied as a function of ratio a,/a; for a coated spheroid [&;
=(-3,-3,-37), 1;=(1,1,1), &,=10, and pu,=1].
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FIG. 8. Normalized total scattering cross section of a coated
spheroid vs the ratio a,/a; for three incident cases [£,=(-3,-3,
-5.34), £,=10, ;=(1,1,1), mp=1, p=2, and a;=\y/20].

observed at about a,/a;=1.25, consistent with that predicted
by the quasistatic condition (8). From Figs. 8(b) and 8(c), it
is found that there is a resonance around a,/a;=1.1 when the
incident wave is polarized in the x-y plane. We further find
that the scattering cross section is insensitive to the incident
direction, and only depends on the polarization of the electric
field. So we choose a coated sphere and let it have the same
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FIG. 9. Normalized total scattering cross section of a coated
sphere as a function of ratio a,/a; for a fixed inner core (e,=-3,
Er= 10, M=M= 1 N and a =)\0/20)

cross section as that of the spheroid in the x-y plane to ex-
amine if the resonance still exists. In the coated sphere, the
core material is isotropic and has the parameters &,=-3,
m1=1, and a;=N\q/20. Material parameters of the mantle in
the coated sphere are the same as that in the spheroidal con-
figuration. Figure 9 shows the normalized total scattering
cross section of this coated sphere as a function of a,/a;. It is
found that there is a resonance peak at a,/a;=1.03, deviating
a little from that appearing in the coated spheroid. This simi-
larity may imply that the resonance effect in the coated
spheroid is probably due to the surface mode of the spheroi-
dal particle.

C. Particulate composite

From the examples presented above, we have shown that
electromagnetically transparent materials (multilayered
sphere and coated spheroid) can be designed by using the
concept of “neutral inclusion.” As a final example, we will
verify whether a particulate composite can be made “invis-
ible.” In the simulation, we construct a model [Fig. 10(a)] for
a particulate composite mentioned in Sec. II C. In Fig. 10(a),
seven spherical particles with e;=-2 and u;=1 are embed-
ded in a host matrix of a spherical shape with &,=2 and
Mo=1. The radius of the matrix sphere is taken to be \q/10.
For the particle arrangement, one sphere is fixed in the center
of the matrix sphere; the others are all located on the axes
and \y/15 away from the center. The radius of the particle
can vary, giving different volume fractions of the particle.
The full-wave simulation of this composite is conducted with
commercial FEM software [19].

Figure 10(b) shows the simulated total scattering cross
section (black dot) of this composite as a function of particle
volume fraction ¢,. Using Eq. (3), the result for its effective
homogeneous sphere with the permittivity estimated from
Eq. (9) is also plotted as the dashed line in Fig. 10(b). The
finite-element simulation clearly shows that this composite
has a very low scattering cross section at about ¢;=8.9%.
This value is close to the theoretical prediction using the MG
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FIG. 10. (a) Sketch of a particulate composite, with material
parameters ¢;=—2 and u;=1 for the particle, e,=2 and u,=1 for
the matrix, and the radius of the composite sphere \o/10; (b) the
full-wave normalized total scattering cross section of the composite
(black dot) and its effective homogeneous sphere with the permit-
tivity estimated from Eq. (9) (the dashed line) and from Eq. (10)
(the solid line), vs the particle volume fraction c;.

formula, which gives ¢;=10%. At the volume fraction larger
than 10%, the MG-based estimation has a large deviation
from the numerical simulation. One of the reasons is that the
MG method does not take into account the particle interac-
tion. Consequently, this method will underestimate the effec-
tive permittivity when the particle volume fraction increases.
If the particle interaction is considered, an improved MG
method [20] can be used, which is still valid for relatively
high volume fraction. From this method, the effective per-
mittivity of a particulate composite is calculated simply by
[20]

ex=8| 1+ 36](1+F*) (10)
L 1—e 438040 ]

where £=¢,/(g,—-¢&,) and I'"=c¢,/[4(1+38)?]. The total scat-
tering cross section of the effective homogeneous sphere
with the permittivity e« estimated from Eq. (10) is shown as
the solid line in Fig. 10(b). It is found that a significant
improvement is observed for the volume fraction larger than
10%. The remaining discrepancy may come from the fact
that the multiple scattering of particles becomes important
when the particle size is increased, thus the quasistatic analy-
sis is no longer valid.

IV. SUMMARY

By introducing the concept of “neutral inclusion,” we
have generalized the condition for electromagnetic wave
transparency found by Al and Engheta [12]. The analytic
transparency conditions for a multilayered sphere, coated
spheroid, and particulate composite are derived in the quasi-
static case. It is checked by the full-wave simulation that the
obtained quasistatic conditions give a good prediction in the
case of a small particle. For a large particle, the significant
reduction of the total scattering cross section still exists, but
there is a deviation from the prediction based on the quasi-
static analysis. The resonance phenomenon appearing in the
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multilayered sphere and coated spheroid has also been dis-
cussed. All these analyses are helpful for the design of elec-
tromagnetically transparent materials.
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APPENDIX

For the calculation of scattering coefficients a, and b,, of a
multilayered sphere, a recursive algorithm has been devel-
oped by Wu and Wang [21] in the framework of Mie theory.
Here we use its modified version [22], and calculate the scat-
tering coefficients from an=A£lL+1) and bn=BflL+l), with the
help of

!
My o e (mpx) = myD (my, 1x,)

AT = R (my,1x) ,
" Ty H(mixy) = mDS (my )

(A1)

b 1
mHo(mpx) = my, D (my, 1)

BV =R, (my,x)) :
" e m,HZ(mlxl)—mm,u,Df)(mmxl)

(A2)
with
R,(mpx) D} (mpx) = A D (mpx)
pra R (mpcy) = gAY

HZ(mlxl) =

i

M1+1Rn(m1x1)D£zl)(mzxz) - M1+1BS)D;3)(mzxz)
R, (mx;) — BS)

H Z(mlxl) =

)

where

Hy(myxy) = D (myx) g
H))(myx)) = g D (myx)),
D(2) = )/ (2),
DY) = £/,
R,(2) = 4,(2)/{,(2),
(2) = 7j,(2),

and

4(2)=zhM(2)

are Riccati-Bessel functions. According to Egs. (Al) and
(A2), a, and b, can be obtained by considering the initial
values ALI)=B£U=0.
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